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Goals and overview

♣ Study quantum symmetries of C*-algebras:
Unitary Tensor Categories (UTC) act on operator algebras via
unitary tensor functors: [HHP20, Izu98, Jon20]

H : C
⊗
↪−→ Bim(A).

♥ Perform subfactor reconstruction for C*-algs:
all irreducible finite index extensions of II1-factors are crossed
products N ⊂ N oH Q, where Q ∈ C is a Q-system. [JP19]

♠ C*-algs are good receptacles for UTC-actions:
i.e. C∗Alg is Q-system complete. [CHPJP21]

♦ Induce new UTC-actions on W*/C*-algs from
old. [GY20]

2 / 32



UTCs in nature

UTCs arise in various different contexts:

I Finite groups: Hilb(G , ω), where [ω] ∈ H3(G ,U(1))
determines associativity/coherence.

I Compact groups: Finite dimensional representations:
Rep(G ).

I Subfactors: the standard invariant of N ⊂ M in terms of
higher relative commutants.

I Discrete compact quantum groups: Tannaka-Krein
duality: to G corresponds fiber functor (F : Rep(G)→ Hilb).
[DCY13]
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Graphical calculus for UTCs

I Diagrams read bottom to top

◦ Objects denoted by labelled strands

• 1-morphisms denoted by coupons:

X

V

Y Z

W

T

U
f

g †

h

k
f : V → X ⊗ T
g : Y → T ⊗ U
h : 1C → U
k : W → Z

− ◦ − Composition by vertical stacking

−⊗− Tensoring by horizontal concatenation

† Adjoint by vertical reflection

8 / 32



Graphical calculus for C∗/W∗-2-categories

I A tensor category is a 2-category with one object.
For 2-categories, we have a dimension shift:

◦ Objects denoted by shadings,
• 1-morphisms by strands,
•• 2-morphisms by coupons.

X

V

Y Z

W

T

U
f

g †

h

k
a

b

c

f : V ⇒ X ⊗ T
g : Y ⇒ T ⊗ U
h : 1C ⇒ U
k : W ⇒ Z

T : c → b
U : b → b
V : a→ b
W : b → c
X : a→ c
Y : c → b
Z : b → c

Example

There is a 2-category C∗Alg whose objects are unital C∗-algebras,
1-morphisms are right Hilbert C∗-correspondences, and
2-morphisms adjointable intertwiners.
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C∗Alg : Right C*-correspondences in detail

C∗Alg is the C*-2-category consisting of:

• 0-mor: Unital C*-algebras: A, B, C, ...

• 1-mor: Right C*-Correspondences:

AXB ∈ C∗Alg(A→ B), BYC ∈ C∗Alg(B → C ), ...
A C-vector space X with commuting left A- and right
B-actions, and a right B-valued positive definite inner
product:

〈 · | · 〉B : X × X → B.

A left A-action on X by adjointable operators: A right B-linear
map T : XB → ZB between right B-modules is adjointable if
there is a right B-linear map T † : ZB → XB such that

〈η|T ξ〉B = 〈T †η|ξ〉B ∀ ξ ∈ X , ∀ η ∈ Z .

• 2-mor: Adjointable intertwiners: f ∈ C∗Alg(AXB ⇒ AZB).
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Q-systems in C*-2-categories

A Q-system in C is a 1-morphism Q ∈ C(b → b) with

multiplication m = and unit i = satisfying:

(Q1) Associativity: = ,

(Q2) Unitality: = = ,

(Q3) Frobenius: = = ,

(Q4) Separable: = .[BKLR15]

Remark

I Q-systems in UTCs give alternative axiomatization of the
standard invariant of finite-index subfactors. [Müg03]
I Q-systems are also higher idempotents. Q-system completion for
C*/W*-2-cats comparable with 2-cats of condensation monads.
[DR18] 13 / 32
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Bimodules over Q-systems

A bimodule X ∈ C(a→ b) over Q-systems P ∈ C(a→ a) and
Q ∈ C(b → b) consists of left and right actions

λ = and ρ = , satisfying

(B1) (associativity) = , = , = ,

(B2) (separable) = = ,

(B3) (Frobenius) = = and = = ,

(B4) (unital) = and = .
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Bimodule intertwiners

Given Q-systems P ∈ C(a→ a) and Q ∈ C(b → b), and P − Q
bimodules X ∈ C(a→ b) and Y ∈ C(a→ b), we define

QSys(C)(PXQ ⇒ PY Q)

to consists of all those f ∈ C(aXb ⇒ aYb) such that

f
=

f
and

f
=

f
.

♣ This defines a C*-2-category QSys(C) with canonical embedding
ιC : C→ QSys(C), mapping C 3 c 7→ 1c , the trivial Q-system; i.e
the monoidal unit QQQ ∈ C(Q → Q).

III C is Q-system complete
Dfn⇔ ιC defines a †-2-equivalence
Thm⇔ Q-systems unitarity split.
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Composition of 1-morphisms

I Analogous to Connes fusion/Relative tensor product:
To compose the P − Q bimodule AXB and the Q − R bimodule

BY C , we unitarily split the separability projector ([NY16])

pX ,Y := := = = u†X ,Y ◦ uX ,Y

for a coisometry uX ,Y , unique up to unique unitary.
Graphically:

= AX ⊗Q YC u = uX ,Y .
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Realization of Q-systems

Theorem: [CHPJP21]

C∗Alg is Q-system complete; i.e. C∗Alg ∼= QSys(C∗Alg).

Realization | · | : QSys(C∗Alg)→ C∗Alg is inverse †-2-functor to
ιC∗Alg : C∗Alg→ QSys(C∗Alg), is defined as follows:
♠ A Q-system Q ∈ C∗Alg(B → B) maps to |Q| := HomC−B(B → Q) :

q1 · q2 :=

q1

q2

, 1|Q| := , q∗ := q† .

I |Q| is C* via |Q| → End−Q(B �B Q), End−Q(B �B Q)→ |Q|

q 7→ q x 7→ x ,

mutually inverse unital ∗-isomorphisms.
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Realization of bimodules and intertwiners

♠ P-Q bimod X ∈ C∗Alg(A→ B) gives |X | := Hom−B(B → X ) :

p B ξ :=
p

ξ

, ξ C q :=

ξ

q

∀ f ∈ |P |,
∀ η ∈ |M |, and

∀ g ∈ |Q|.

♠ f ∈ C∗Alg(AXB ⇒ AY B) P-Q intertwiner maps to

|f | : |X | → |Y | given by |f |

 ξ

 :=

ξ

f
∈ |Y |.

|f | is |P|-|Q| bimodular.

I Unitarily splitting separability projectors pX ,Y = u†X ,Y ◦ uX ,Y

gives tensor structure for | · |, and splitting of 1|Q|.
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Conclusions and perspectives

♠ Realization splits the problem of classifying finite index
extensions of a receptacle A in two parts:

(P1) Analytical: Constructing and classifying UTC-actions
H : C→ Bim(A).
Generalization of classification of groups actions on II1
factors/C*-algebras, for which little is known for UTC.

(P2) Algebraic: Classifying Q-systems in a UTC.
Non-abelian cohomology problem.
Independent of A.

♣ C∗Alg being Q-system complete allows for the straightforward
adaptation of subfactor results to the C∗-setting; i.e.
whenever C acts on A, we can automatically realize solutions
to (P2) to obtain finite index extensions of A and bimodules
between them.
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Conclusions and applications

♦ Q-System completion induces new actions of UTCs Morita
equivalent to C on finite extensions of A :

Example

For closed connected manifold X , C (X ) admits action from
Hilb(G , ω). [Jon20]
Q-sys completion induces new actions of group theoretical fusion
categories on continuous trace C*-algebras with connected
spectrum.
By K-theoretic obstructions, these categories are necessarily
integral.

♥ Thank you for listening!
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